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Background of this analysis
• Gen-IV identified 6 promising reactor concepts to serve the 

future energy market and also recognized the importance of 
closing the fuel cycle

• US Energy policy also favors the hydrogen economy and the 
first priority development effort of Gen-V in the US is a VHTR 
for H2-production

• AFCI focuses on appropriate paths forward to close the fuel 
cycle taking into account the timing, technological, economic 
and institutional constraints

• The main question for this preliminary dynamic analysis 
becomes:
- What mix of reactor types and fuel cycle options are best suited

to meet the projected demands of electricity and hydrogen 
production?
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Evolving Role for Nuclear Energy
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Systems optimization question becomes …

• How to allocate the fissile materials to reactor types to 
maximize the economic value added for the nuclear energy 
system as a whole, i.e. distribute the economic resource to 
reactor and fuel types according to their realizable contribution 
to this added value.

- The planning horizon over which this economic value added is 
to be optimized is 40-60 years, i.e. lifetime of assets.

- Used to inform government’s intervention to guide allocation 
through indirect tools, i.e. regulation, taxes, FOAK financing, …
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Electricity and Hydrogen demand scenario for 
the US

• Based on DOE/EIA & IIASA/WEC data,
- Overall electricity demand

- 2000-2020, growth by 1.9 %/yr
- 2020-…., growth by 1.4%/yr

- Energy demand assigned to nuclear is expected to grow by 2 
%/yr after 2010

- Overall hydrogen demand
- 2000-2020, growth by 2.2 %/yr
- 2020-…., growth by 1 to 1.6 %/yr depending on sector

• 1 %/yr residential and transport sector
• 1.6 %/yr refinery sector
• 1.4 %/yr commercial sector
• 1.5 %/yr industrial sector

- Nuclear hydrogen production assumed from 0% in 2020 to 
25% by 2050
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Total Nuclear Energy Demand
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Four fuel cycle scenarios considered

• LWRs in once-through mode
• LWRs + HTGRs in once-through mode
• LWRs + FRs CR>1
• LWRs + HTGRs + FRs (different CRs)

• LWRs essentially for electricity production
• HTGRs + FRs for hydrogen production
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Reactor and Fuel Attributes
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LWRs + HTGRs once-through operation
• LWRs once-through operation for electricity demand only

- By mid-century
- 190 000 tHM SF
- 2 400 tHM TRUs, including 2 180 tHM Pu
- 1.5 million tons Unat used during period of 2000-2050

• On world-scale, this would become 5.9 million tUnat

- If also hydrogen energy demand should be delivered
- 250 000 tHM SF, + 1 million tUnat to be used

• LWRs + HTGRs once-through operation for electricity + hydrogen 
demand

174 500171 200SF Interim storage (tHM)
27 20020 100SF at-reactor storage (tHM)
3 500-HTGR (tHM/yr)
5 1505 150UOX (tHM/yr)

Fabrication
152 40031 200Enrichment (tSWU/yr)

3.051.95DU stock (106 tHM)
2.851.5Unat used 2000-2050 (106 tHM)

Electricity + hydrogenElectricityEnergy demand
ALWR + HTGRALWR

But rapidly 
growing HTGR 
SF stock and 
enrichment 
services by end 
of century
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TRU Inventory In-Pile and Out-of-Pile
TRU inventory
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LWRs + FRs scenario

• Starting from today’s existing LWR-park, and assuming CR = 1.25 for 
FRs, what is the maximum amount of energy that can be produced 
assuming LWRs for electricity use and FRs for hydrogen production?

FR fuel comes from LWR SF (legacy + generated) plus FR bred fuel

LWR fuel comes from virgin ore
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SF and TRU arising for LWRs + FRs scenario
• LWR UOX Aq. Reprocessing: 

- 2000 tHM/yr in 2020, + 3000 tHM/yr in 2030
- 5 year cooling time

• FR Metal Fuel Dry Reprocessing:
- Up to 1 200 tHM/yr
- 5 year cooling time
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LWRs + HTGRs + FRs scenario

• LWRs for electricity production
• HTGRs + FRs (different CRs) for hydrogen production

Operating Capacity and Edem versus Eprod
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SF & HLW Inventory

Total Amount of SF and HLW in Fuel Cycle
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TRU Inventory
• In 2050

- CR = 1.25  TRU-amount = 2 250 tHM, 80 000 tHM SF 
- CR = 0.25  TRU-amount = 1 820 tHM, 88 000 tHM SF

TRU inventory
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Summary

• A mix of
- 33 % LWRs once-through for electricity
- 56 % HTGRs one-through for electricity/hydrogen
- 11 % FR (CR 1.25) closed cycle for hydrogen

• Succeeds to
- Meet demand for electricity and for hydrogen
- Cap the SF stock at less than 100 000 tHM until 2050

• But is it economic?
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Economics
• Capital costs

- LWR 25.6 $/MWhe, i.e. 1 500 $/kWe overnight cost
- HTGR 20.5 $/MWhe, i.e. 1 150 $/kWe
- FR 37.7 $/MWhe, i.e. 2 000 $/kWe
- WACC = 12 %, 17 years economic lifetime

• O&M Costs
- 15 $/MWhe for all reactors

• Fuel cycle costs
- HTGR particle fuel fabrication = 700 $/kgHM
- LWR repro costs = 800 $/kgHM
- FR repro costs = 1 100 $/kgHM; refab costs = 1 500 $/kgHM

55.846.949.92050

55.349.950.12020

Electricity + hydrogen + waste mgtElectricity + hydrogenElectricity

(A)LWR + HTGR + FR CR 1.25(A)LWR + HTGR(A)LWR$/MWhe
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Conclusions

• Preliminary dynamic analysis showed:
- Electricity + hydrogen energy demand can be met by nuclear 

energy
- But, LWRs + FRs based scenario may be limited and need 

additional HTGRs to match fast growing energy demands
- However, HTGR SF stock is growing rapidly and important 

front-end needs
- If waste management considerations are taken into account, 

then LWRs + HTGRs + FRs scenario allows to:
- Keep SF amount in fuel cycle below YM (technical) capacity 

to 2050
- Reduce TRU inventory in fuel cycle by at least 20 % (mid 

century)
- Keep energy cost increase less than 10 %


